Conditioned Slicing Supports Partition Testing

Rob Hierons and Mark Harman Chris Fox Mohammed Daoudi and Lahcen Ouarbya
Brunel University King’s College Goldsmiths College
Uxbridge University of London University of London
Middlesex Strand New Cross
UBS8 3PH London WC2R 2LS London SE14 6NW
United Kingdom United Kingdom United Kingdom
Abstract

This paper describes the use of conditioned slicing to assist partition testing, illustrating
this with a case study. The paper shows how a conditioned slicing tool can be used to provide
confidence in the uniformity hypothesis for correct programs, to aid fault detection in incorrect
programs and to highlight special cases.

1 Introduction

When generating tests from a specification it is common to apply partition analysis: a partition P =
{D:,...,Dy,} of the input domain D, is produced. This partition has the property that the behaviour
of the specification is uniform (and thus relatively simple) on each D;. Faults may either affect the
behaviour within subdomain (computation faults) or affect the boundaries of the subdomains (domain
faults).

Computation faults are detected by choosing one or more test cases from each subdomain. Domain
faults are detected by testing around subdomain boundaries (Clarke et al., 1982; White and Cohen,
1980). Suppose an implementation under test I is tested on the basis of partition P. If I is uniform
on each of the subdomains of P, it is likely that faults will be detected by a test set based on P.
This form of assumption, that the behaviour is uniform on each D;, is the ‘uniformity hypothesis’ of
partition testing.

Conditioned slicing (Canfora et al., 1998a) is a technique for identifying those statements and
predicates which contribute to the computation of a selected set of variables when some chosen
condition is satisfied. The technique has previously been used in program comprehension (De Lucia
et al., 1996; Fox et al., 2001) and re-engineering(Canfora et al., 1998b).

This paper shows how conditioned slicing using the ConSIT slicing tool (Danicic et al., 2000) can
be used to assist partition-based testing. Specifically it will be shown how conditioned slicing:

1. Provides confidence in uniformity holding on a subdomain D; from P.

2. Suggests the existence of faults associated with subdomain D; € P, providing information that
can be used to either refine P or direct effort towards D;.

3. Detects the existence of erroneous special cases.

These three topics are addressed by sections 2, 3 and 4 respectively. All examples will be con-
structed with respect to the program in Figure 1, which calculates tax codes and amounts of tax
payable, including allowances for a United Kingdom citizen in the tax year April 1998 to April 1999.

main() { if (married && age>=65 && income>16800) {

int age, blind, widow, married, income; t = pcl0-((income-16800)/2);
int personal, tax, t, pclO; char code; if (t>3470) pcl0 = t; else pcl0 = 3470;}
scanf ("%d",&age) ; if (income<=personal) tax = 0;
scanf ("%d",&blind); else {
scanf ("%d" ,&married); income = income-personal;
scanf ("%d" ,&widow) ; if (income<=pcl0) tax = income/10;
scanf ("%d" ,&income) ; else {
tax = pcl0/10;
if (age>=75) personal = 5980; income = income-pcl0;
else if (age>=65) personal = 5720; if (income<=28000)
else personal = 4335; tax = ((tax+income)*23)/100;
else {
if ((age>=65) && income>16800) { tax = ((tax+28000)*23)/100;
t = personal - ((income-16800)/2); income = income-28000;
if (t>4335) personal = t; tax = ((tax+income)*40)/100;}}}

else personal = 4335;}
if (!blind && 'married && age<65)

if (blind) personal = personal + 1380; code = ’L’;
else if (!blind && age<65 && married)
if (married && age>=75) pcl0 = 6692; code = ’H’;
else if (married && (age>=65)) pcl0O = 6625; else if (age>=65 && age<75 && 'married && 'blind)
else if (married || widow) pclO = 3470; code = ’P’;
else pcl0 = 1500; else if (age>=65 && age<75 && married && !'blind)
code = ’V’;

else code = ’T’;}

Figure 1: UK Income Taxation Calculation Program

2 Confidence Building with Conditioned Slicing

One of the problems associated with partition analysis is that the behaviour of the implementation
under test need not be uniform on each element of the partition. Where this assumption fails, the
test generated on the basis of P is likely to be insufficient. It would therefore be useful to be able
to determine whether the uniformity hypothesis holds. Where it does not hold for some D;, ideally
the tester should either further divide D; or choose more tests from D,;.

Let C'p, denote the condition that the input lies in D;. Then, if I is uniform on D;, the conditioned
slice S(I,Cp,) is likely to be relatively simple: slicing using condition Cp, should lead to much
simplification (Hierons and Harman, 2000). Where this is the case, the tester might have greater
confidence in the uniformity hypothesis holding for D;. Consider the tax example of Figure 1 and
suppose the tester chooses the subdomain defined by the condition C; below:

age > 75 A blind N 0 < income < 7360
For this condition and the variable tax, ConSIT produces the following conditioned slice.
tax = 0;

The simplicity of this conditioned slice suggests that the behaviour is uniform on this subdomain
and thus that only a small number of tests are required here. Indeed, in this case, the slice is so
simple that the tester can easily determine correctness.

if (age>75) personal=5980; personal=5980;

else if (age>=65)personal=5720; if (age>=75 && income==1500) personal=personal-1000;
personal=personal+1380; personal=personal+1380;

if (income<=personal) tax=0; if (income<=personal) tax=0;

else {income=income-personal; else {income=income-personal;
tax=income/10;} tax=income/10;}

Slice for Cy Applied to First Faulty Tax Program | Slice for C; Applied to Second Faulty Tax Program

Figure 2: Fault-Revealing Conditioned Slices

tax = 0; personal = 5720; tax = 0;
personal = personal + 1380;

income = income - personal;
tax = income/10;
Slice for Condition C{ | Slice for Condition C? Slice for Condition C}

Figure 3: Conditioned Slices for refined Subdomains

3 Fault Detection with Conditioned Slicing

Suppose a fault is introduced by changing if (age >= 75) to if (age > 75). ConSIT produces
the slice in the left-hand column of Figure 2 for the subdomain defined by C';. Here there has been far
less simplification, suggesting that the behaviour may not be uniform. In particular, the conditioned
slice contains if statements. In such situations, ConSIT can be of further assistance, by computing
the simplest path conditions applicable. In this case it produces: age = 75 A income <= 7100,
age = 75 A income > 7100, and age > 75.

This suggests that the subdomain denoted by €} should be refined to include each of the three
path conditions, yielding:

1. C! = (Cy A age = T5 A income <= 7100);
2. C? = (Cy A age =75 A income > T100);
3. C% = (Cy A age > T5).

For these refined domains, ConSIT produces the three slices in Figure 3. Values from the subdo-
main denoted by C? will detect the fault.

4 Highlighting Special Cases with Conditioned Slicing

Consider now a second fault, produced by adding the following extra (malicious) code just before
the line that starts if blind:

if (age >= 75 &% income == 1500) personal = personal - 1000;

Slicing using C' yields the fragment in the right-hand column of Figure 2. This appears not
to be uniform and thus the tester might either choose to test thoroughly within the corresponding
subdomain, or to analyse the slice further. Symbolically evaluating this slice leads to two new
conditions:

1. (income = 1500);

2. not (income = 1500).

The fault will be found by refining the subdomain, corresponding to C'y, using these two conditions
and then testing from the refined domains.

Interestingly, this second fault is of a type that is usually very difficult to find using specification-
based testing because the implementation contains behaviour that is not in the specification. Since
the specification does not contain this behaviour, and the behaviour lies within the body of a sub-
domain, traditional specification-based testing is unlikely to find it: there is no information in the
specification that indicates that the value 1500 for income is significant. Fortunately, conditioned
slicing highlights this additional behaviour.

References

Canfora, G., Cimitile, A., and De Lucia, A. (1998a). Conditioned program slicing. In Harman, M. and Gal-
lagher, K., editors, Information and Software Technology Special Issue on Program Slicing, volume 40,
pages 595-607. Elsevier Science B. V.

Canfora, G., Lucia, A. D., and Munro, M. (1998b). An integrated environment for reuse reengineering C
code. Journal of Systems and Software, 42:153-164.

Clarke, L. A., Hassell, J., and Richardson, D. J. (1982). A close look at domain testing. IEEE Transactions
on Software Engineering, 8:380-390.

Danicic, S., Fox, C., Harman, M., and Hierons, R. M. (2000). ConSIT: A conditioned program slicer. In [EEE
International Conference on Software Maintenance (ICSM’00), pages 216-226, San Jose, California,
USA. IEEE Computer Society Press, Los Alamitos, California, USA.

De Lucia, A., Fasolino, A. R., and Munro, M. (1996). Understanding function behaviours through pro-
gram slicing. In 4" IEEE Workshop on Program Comprehension, pages 9-18, Berlin, Germany. IEEE
Computer Society Press, Los Alamitos, California, USA.

Fox, C., Harman, M., Hierons, R. M., and Danicic, S. (2001). Backward conditioning: a new program
specialisation technique and its application to program comprehension. In 9" IEEE International
Workshop on Program Comprehesion (IWPC’01), Toronto, Canada. IEEE Computer Society Press,
Los Alamitos, California, USA. To appear.

Hierons, R. M. and Harman, M. (2000). Program analysis and test hyptheses complement. In [EEE
ICSE International Workshop on Automated Program Analysis, Testing and Verification, pages 32—39,
Limerick, Ireland.

White, L. J. and Cohen, E. I. (1980). A domain strategy for computer program testing. IEEE Transactions
on Software Engineering, 6:247-257.

