
Conditioned Sliing Supports Partition Testing

Rob Hierons and Mark Harman

Brunel University

Uxbridge

Middlesex

UB8 3PH

United Kingdom

Chris Fox

King's College

University of London

Strand

London WC2R 2LS

United Kingdom

Mohammed Daoudi and Lahen Ouarbya

Goldsmiths College

University of London

New Cross

London SE14 6NW

United Kingdom

Abstrat

This paper desribes the use of onditioned sliing to assist partition testing, illustrating

this with a ase study. The paper shows how a onditioned sliing tool an be used to provide

on�dene in the uniformity hypothesis for orret programs, to aid fault detetion in inorret

programs and to highlight speial ases.

1 Introdution

When generating tests from a spei�ation it is ommon to apply partition analysis: a partition P =

fD

1

; : : : ; D

n

g of the input domainD, is produed. This partition has the property that the behaviour

of the spei�ation is uniform (and thus relatively simple) on eah D

i

. Faults may either a�et the

behaviour within subdomain (omputation faults) or a�et the boundaries of the subdomains (domain

faults).

Computation faults are deteted by hoosing one or more test ases from eah subdomain. Domain

faults are deteted by testing around subdomain boundaries (Clarke et al., 1982; White and Cohen,

1980). Suppose an implementation under test I is tested on the basis of partition P . If I is uniform

on eah of the subdomains of P , it is likely that faults will be deteted by a test set based on P .

This form of assumption, that the behaviour is uniform on eah D

i

, is the `uniformity hypothesis' of

partition testing.

Conditioned sliing (Canfora et al., 1998a) is a tehnique for identifying those statements and

prediates whih ontribute to the omputation of a seleted set of variables when some hosen

ondition is satis�ed. The tehnique has previously been used in program omprehension (De Luia

et al., 1996; Fox et al., 2001) and re-engineering(Canfora et al., 1998b).

This paper shows how onditioned sliing using the ConSIT sliing tool (Danii et al., 2000) an

be used to assist partition-based testing. Spei�ally it will be shown how onditioned sliing:

1. Provides on�dene in uniformity holding on a subdomain D

i

from P .

2. Suggests the existene of faults assoiated with subdomain D

i

2 P , providing information that

an be used to either re�ne P or diret e�ort towards D

i

.

3. Detets the existene of erroneous speial ases.

These three topis are addressed by setions 2, 3 and 4 respetively. All examples will be on-

struted with respet to the program in Figure 1, whih alulates tax odes and amounts of tax

payable, inluding allowanes for a United Kingdom itizen in the tax year April 1998 to April 1999.

1

main() f

int age, blind, widow, married, inome;

int personal, tax, t, p10; har ode;

sanf("%d",&age);

sanf("%d",&blind);

sanf("%d",&married);

sanf("%d",&widow);

sanf("%d",&inome);

if (age>=75) personal = 5980;

else if (age>=65) personal = 5720;

else personal = 4335;

if ((age>=65) && inome>16800) f

t = personal - ((inome-16800)/2);

if (t>4335) personal = t;

else personal = 4335;g

if (blind) personal = personal + 1380;

if (married && age>=75) p10 = 6692;

else if (married && (age>=65)) p10 = 6625;

else if (married || widow) p10 = 3470;

else p10 = 1500;

if (married && age>=65 && inome>16800) f

t = p10-((inome-16800)/2);

if (t>3470) p10 = t; else p10 = 3470;g

if (inome<=personal) tax = 0;

else f

inome = inome-personal;

if (inome<=p10) tax = inome/10;

else f

tax = p10/10;

inome = inome-p10;

if (inome<=28000)

tax = ((tax+inome)*23)/100;

else f

tax = ((tax+28000)*23)/100;

inome = inome-28000;

tax = ((tax+inome)*40)/100;ggg

if (!blind && !married && age<65)

ode = 'L';

else if (!blind && age<65 && married)

ode = 'H';

else if (age>=65 && age<75 && !married && !blind)

ode = 'P';

else if (age>=65 && age<75 && married && !blind)

ode = 'V';

else ode = 'T';g

Figure 1: UK Inome Taxation Calulation Program

2 Con�dene Building with Conditioned Sliing

One of the problems assoiated with partition analysis is that the behaviour of the implementation

under test need not be uniform on eah element of the partition. Where this assumption fails, the

test generated on the basis of P is likely to be insuÆient. It would therefore be useful to be able

to determine whether the uniformity hypothesis holds. Where it does not hold for some D

i

, ideally

the tester should either further divide D

i

or hoose more tests from D

i

.

Let C

D

i

denote the ondition that the input lies inD

i

. Then, if I is uniform onD

i

, the onditioned

slie S(I; C

D

i

) is likely to be relatively simple: sliing using ondition C

D

i

should lead to muh

simpli�ation (Hierons and Harman, 2000). Where this is the ase, the tester might have greater

on�dene in the uniformity hypothesis holding for D

i

. Consider the tax example of Figure 1 and

suppose the tester hooses the subdomain de�ned by the ondition C

1

below:

age � 75 ^ blind ^ 0 � inome � 7360

For this ondition and the variable tax, ConSIT produes the following onditioned slie.

tax = 0;

The simpliity of this onditioned slie suggests that the behaviour is uniform on this subdomain

and thus that only a small number of tests are required here. Indeed, in this ase, the slie is so

simple that the tester an easily determine orretness.

2

if (age>75) personal=5980; personal=5980;

else if (age>=65)personal=5720; if (age>=75 && inome==1500) personal=personal-1000;

personal=personal+1380; personal=personal+1380;

if (inome<=personal) tax=0; if (inome<=personal) tax=0;

else finome=inome-personal; else finome=inome-personal;

tax=inome/10;g tax=inome/10;g

Slie for C

1

Applied to First Faulty Tax Program Slie for C

1

Applied to Seond Faulty Tax Program

Figure 2: Fault-Revealing Conditioned Slies

tax = 0; personal = 5720; tax = 0;

personal = personal + 1380;

inome = inome - personal;

tax = inome/10;

Slie for Condition C

1

1

Slie for Condition C

2

1

Slie for Condition C

3

1

Figure 3: Conditioned Slies for re�ned Subdomains

3 Fault Detetion with Conditioned Sliing

Suppose a fault is introdued by hanging if (age >= 75) to if (age > 75). ConSIT produes

the slie in the left-hand olumn of Figure 2 for the subdomain de�ned by C

1

. Here there has been far

less simpli�ation, suggesting that the behaviour may not be uniform. In partiular, the onditioned

slie ontains if statements. In suh situations, ConSIT an be of further assistane, by omputing

the simplest path onditions appliable. In this ase it produes: age = 75 ^ inome <= 7100,

age = 75 ^ inome > 7100, and age > 75.

This suggests that the subdomain denoted by C

1

should be re�ned to inlude eah of the three

path onditions, yielding:

1. C

1

1

� (C

1

^ age = 75 ^ inome <= 7100);

2. C

2

1

� (C

1

^ age = 75 ^ inome > 7100);

3. C

3

1

� (C

1

^ age > 75).

For these re�ned domains, ConSIT produes the three slies in Figure 3. Values from the subdo-

main denoted by C

2

1

will detet the fault.

4 Highlighting Speial Cases with Conditioned Sliing

Consider now a seond fault, produed by adding the following extra (maliious) ode just before

the line that starts if blind:

if (age >= 75 && inome == 1500) personal = personal - 1000;

Sliing using C

1

yields the fragment in the right-hand olumn of Figure 2. This appears not

to be uniform and thus the tester might either hoose to test thoroughly within the orresponding

subdomain, or to analyse the slie further. Symbolially evaluating this slie leads to two new

onditions:

3

1. (inome = 1500);

2. not (inome = 1500).

The fault will be found by re�ning the subdomain, orresponding to C

1

, using these two onditions

and then testing from the re�ned domains.

Interestingly, this seond fault is of a type that is usually very diÆult to �nd using spei�ation-

based testing beause the implementation ontains behaviour that is not in the spei�ation. Sine

the spei�ation does not ontain this behaviour, and the behaviour lies within the body of a sub-

domain, traditional spei�ation-based testing is unlikely to �nd it: there is no information in the

spei�ation that indiates that the value 1500 for inome is signi�ant. Fortunately, onditioned

sliing highlights this additional behaviour.

Referenes

Canfora, G., Cimitile, A., and De Luia, A. (1998a). Conditioned program sliing. In Harman, M. and Gal-

lagher, K., editors, Information and Software Tehnology Speial Issue on Program Sliing, volume 40,

pages 595{607. Elsevier Siene B. V.

Canfora, G., Luia, A. D., and Munro, M. (1998b). An integrated environment for reuse reengineering C

ode. Journal of Systems and Software, 42:153{164.

Clarke, L. A., Hassell, J., and Rihardson, D. J. (1982). A lose look at domain testing. IEEE Transations

on Software Engineering, 8:380{390.

Danii, S., Fox, C., Harman, M., and Hierons, R. M. (2000). ConSIT: A onditioned program slier. In IEEE

International Conferene on Software Maintenane (ICSM'00), pages 216{226, San Jose, California,

USA. IEEE Computer Soiety Press, Los Alamitos, California, USA.

De Luia, A., Fasolino, A. R., and Munro, M. (1996). Understanding funtion behaviours through pro-

gram sliing. In 4

th

IEEE Workshop on Program Comprehension, pages 9{18, Berlin, Germany. IEEE

Computer Soiety Press, Los Alamitos, California, USA.

Fox, C., Harman, M., Hierons, R. M., and Danii, S. (2001). Bakward onditioning: a new program

speialisation tehnique and its appliation to program omprehension. In 9

th

IEEE International

Workshop on Program Comprehesion (IWPC'01), Toronto, Canada. IEEE Computer Soiety Press,

Los Alamitos, California, USA. To appear.

Hierons, R. M. and Harman, M. (2000). Program analysis and test hyptheses omplement. In IEEE

ICSE International Workshop on Automated Program Analysis, Testing and Veri�ation, pages 32{39,

Limerik, Ireland.

White, L. J. and Cohen, E. I. (1980). A domain strategy for omputer program testing. IEEE Transations

on Software Engineering, 6:247{257.

4

