
Conditioned Sli
ing Supports Partition Testing

Rob Hierons and Mark Harman

Brunel University

Uxbridge

Middlesex

UB8 3PH

United Kingdom

Chris Fox

King's College

University of London

Strand

London WC2R 2LS

United Kingdom

Mohammed Daoudi and Lah
en Ouarbya

Goldsmiths College

University of London

New Cross

London SE14 6NW

United Kingdom

Abstra
t

This paper des
ribes the use of
onditioned sli
ing to assist partition testing, illustrating

this with a
ase study. The paper shows how a
onditioned sli
ing tool
an be used to provide

on�den
e in the uniformity hypothesis for
orre
t programs, to aid fault dete
tion in in
orre
t

programs and to highlight spe
ial
ases.

1 Introdu
tion

When generating tests from a spe
i�
ation it is
ommon to apply partition analysis: a partition P =

fD

1

; : : : ; D

n

g of the input domainD, is produ
ed. This partition has the property that the behaviour

of the spe
i�
ation is uniform (and thus relatively simple) on ea
h D

i

. Faults may either a�e
t the

behaviour within subdomain (
omputation faults) or a�e
t the boundaries of the subdomains (domain

faults).

Computation faults are dete
ted by
hoosing one or more test
ases from ea
h subdomain. Domain

faults are dete
ted by testing around subdomain boundaries (Clarke et al., 1982; White and Cohen,

1980). Suppose an implementation under test I is tested on the basis of partition P . If I is uniform

on ea
h of the subdomains of P , it is likely that faults will be dete
ted by a test set based on P .

This form of assumption, that the behaviour is uniform on ea
h D

i

, is the `uniformity hypothesis' of

partition testing.

Conditioned sli
ing (Canfora et al., 1998a) is a te
hnique for identifying those statements and

predi
ates whi
h
ontribute to the
omputation of a sele
ted set of variables when some
hosen

ondition is satis�ed. The te
hnique has previously been used in program
omprehension (De Lu
ia

et al., 1996; Fox et al., 2001) and re-engineering(Canfora et al., 1998b).

This paper shows how
onditioned sli
ing using the ConSIT sli
ing tool (Dani
i
 et al., 2000)
an

be used to assist partition-based testing. Spe
i�
ally it will be shown how
onditioned sli
ing:

1. Provides
on�den
e in uniformity holding on a subdomain D

i

from P .

2. Suggests the existen
e of faults asso
iated with subdomain D

i

2 P , providing information that

an be used to either re�ne P or dire
t e�ort towards D

i

.

3. Dete
ts the existen
e of erroneous spe
ial
ases.

These three topi
s are addressed by se
tions 2, 3 and 4 respe
tively. All examples will be
on-

stru
ted with respe
t to the program in Figure 1, whi
h
al
ulates tax
odes and amounts of tax

payable, in
luding allowan
es for a United Kingdom
itizen in the tax year April 1998 to April 1999.

1

main() f

int age, blind, widow, married, in
ome;

int personal, tax, t, p
10;
har
ode;

s
anf("%d",&age);

s
anf("%d",&blind);

s
anf("%d",&married);

s
anf("%d",&widow);

s
anf("%d",&in
ome);

if (age>=75) personal = 5980;

else if (age>=65) personal = 5720;

else personal = 4335;

if ((age>=65) && in
ome>16800) f

t = personal - ((in
ome-16800)/2);

if (t>4335) personal = t;

else personal = 4335;g

if (blind) personal = personal + 1380;

if (married && age>=75) p
10 = 6692;

else if (married && (age>=65)) p
10 = 6625;

else if (married || widow) p
10 = 3470;

else p
10 = 1500;

if (married && age>=65 && in
ome>16800) f

t = p
10-((in
ome-16800)/2);

if (t>3470) p
10 = t; else p
10 = 3470;g

if (in
ome<=personal) tax = 0;

else f

in
ome = in
ome-personal;

if (in
ome<=p
10) tax = in
ome/10;

else f

tax = p
10/10;

in
ome = in
ome-p
10;

if (in
ome<=28000)

tax = ((tax+in
ome)*23)/100;

else f

tax = ((tax+28000)*23)/100;

in
ome = in
ome-28000;

tax = ((tax+in
ome)*40)/100;ggg

if (!blind && !married && age<65)

ode = 'L';

else if (!blind && age<65 && married)

ode = 'H';

else if (age>=65 && age<75 && !married && !blind)

ode = 'P';

else if (age>=65 && age<75 && married && !blind)

ode = 'V';

else
ode = 'T';g

Figure 1: UK In
ome Taxation Cal
ulation Program

2 Con�den
e Building with Conditioned Sli
ing

One of the problems asso
iated with partition analysis is that the behaviour of the implementation

under test need not be uniform on ea
h element of the partition. Where this assumption fails, the

test generated on the basis of P is likely to be insuÆ
ient. It would therefore be useful to be able

to determine whether the uniformity hypothesis holds. Where it does not hold for some D

i

, ideally

the tester should either further divide D

i

or
hoose more tests from D

i

.

Let C

D

i

denote the
ondition that the input lies inD

i

. Then, if I is uniform onD

i

, the
onditioned

sli
e S(I; C

D

i

) is likely to be relatively simple: sli
ing using
ondition C

D

i

should lead to mu
h

simpli�
ation (Hierons and Harman, 2000). Where this is the
ase, the tester might have greater

on�den
e in the uniformity hypothesis holding for D

i

. Consider the tax example of Figure 1 and

suppose the tester
hooses the subdomain de�ned by the
ondition C

1

below:

age � 75 ^ blind ^ 0 � in
ome � 7360

For this
ondition and the variable tax, ConSIT produ
es the following
onditioned sli
e.

tax = 0;

The simpli
ity of this
onditioned sli
e suggests that the behaviour is uniform on this subdomain

and thus that only a small number of tests are required here. Indeed, in this
ase, the sli
e is so

simple that the tester
an easily determine
orre
tness.

2

if (age>75) personal=5980; personal=5980;

else if (age>=65)personal=5720; if (age>=75 && in
ome==1500) personal=personal-1000;

personal=personal+1380; personal=personal+1380;

if (in
ome<=personal) tax=0; if (in
ome<=personal) tax=0;

else fin
ome=in
ome-personal; else fin
ome=in
ome-personal;

tax=in
ome/10;g tax=in
ome/10;g

Sli
e for C

1

Applied to First Faulty Tax Program Sli
e for C

1

Applied to Se
ond Faulty Tax Program

Figure 2: Fault-Revealing Conditioned Sli
es

tax = 0; personal = 5720; tax = 0;

personal = personal + 1380;

in
ome = in
ome - personal;

tax = in
ome/10;

Sli
e for Condition C

1

1

Sli
e for Condition C

2

1

Sli
e for Condition C

3

1

Figure 3: Conditioned Sli
es for re�ned Subdomains

3 Fault Dete
tion with Conditioned Sli
ing

Suppose a fault is introdu
ed by
hanging if (age >= 75) to if (age > 75). ConSIT produ
es

the sli
e in the left-hand
olumn of Figure 2 for the subdomain de�ned by C

1

. Here there has been far

less simpli�
ation, suggesting that the behaviour may not be uniform. In parti
ular, the
onditioned

sli
e
ontains if statements. In su
h situations, ConSIT
an be of further assistan
e, by
omputing

the simplest path
onditions appli
able. In this
ase it produ
es: age = 75 ^ in
ome <= 7100,

age = 75 ^ in
ome > 7100, and age > 75.

This suggests that the subdomain denoted by C

1

should be re�ned to in
lude ea
h of the three

path
onditions, yielding:

1. C

1

1

� (C

1

^ age = 75 ^ in
ome <= 7100);

2. C

2

1

� (C

1

^ age = 75 ^ in
ome > 7100);

3. C

3

1

� (C

1

^ age > 75).

For these re�ned domains, ConSIT produ
es the three sli
es in Figure 3. Values from the subdo-

main denoted by C

2

1

will dete
t the fault.

4 Highlighting Spe
ial Cases with Conditioned Sli
ing

Consider now a se
ond fault, produ
ed by adding the following extra (mali
ious)
ode just before

the line that starts if blind:

if (age >= 75 && in
ome == 1500) personal = personal - 1000;

Sli
ing using C

1

yields the fragment in the right-hand
olumn of Figure 2. This appears not

to be uniform and thus the tester might either
hoose to test thoroughly within the
orresponding

subdomain, or to analyse the sli
e further. Symboli
ally evaluating this sli
e leads to two new

onditions:

3

1. (in
ome = 1500);

2. not (in
ome = 1500).

The fault will be found by re�ning the subdomain,
orresponding to C

1

, using these two
onditions

and then testing from the re�ned domains.

Interestingly, this se
ond fault is of a type that is usually very diÆ
ult to �nd using spe
i�
ation-

based testing be
ause the implementation
ontains behaviour that is not in the spe
i�
ation. Sin
e

the spe
i�
ation does not
ontain this behaviour, and the behaviour lies within the body of a sub-

domain, traditional spe
i�
ation-based testing is unlikely to �nd it: there is no information in the

spe
i�
ation that indi
ates that the value 1500 for in
ome is signi�
ant. Fortunately,
onditioned

sli
ing highlights this additional behaviour.

Referen
es

Canfora, G., Cimitile, A., and De Lu
ia, A. (1998a). Conditioned program sli
ing. In Harman, M. and Gal-

lagher, K., editors, Information and Software Te
hnology Spe
ial Issue on Program Sli
ing, volume 40,

pages 595{607. Elsevier S
ien
e B. V.

Canfora, G., Lu
ia, A. D., and Munro, M. (1998b). An integrated environment for reuse reengineering C

ode. Journal of Systems and Software, 42:153{164.

Clarke, L. A., Hassell, J., and Ri
hardson, D. J. (1982). A
lose look at domain testing. IEEE Transa
tions

on Software Engineering, 8:380{390.

Dani
i
, S., Fox, C., Harman, M., and Hierons, R. M. (2000). ConSIT: A
onditioned program sli
er. In IEEE

International Conferen
e on Software Maintenan
e (ICSM'00), pages 216{226, San Jose, California,

USA. IEEE Computer So
iety Press, Los Alamitos, California, USA.

De Lu
ia, A., Fasolino, A. R., and Munro, M. (1996). Understanding fun
tion behaviours through pro-

gram sli
ing. In 4

th

IEEE Workshop on Program Comprehension, pages 9{18, Berlin, Germany. IEEE

Computer So
iety Press, Los Alamitos, California, USA.

Fox, C., Harman, M., Hierons, R. M., and Dani
i
, S. (2001). Ba
kward
onditioning: a new program

spe
ialisation te
hnique and its appli
ation to program
omprehension. In 9

th

IEEE International

Workshop on Program Comprehesion (IWPC'01), Toronto, Canada. IEEE Computer So
iety Press,

Los Alamitos, California, USA. To appear.

Hierons, R. M. and Harman, M. (2000). Program analysis and test hyptheses
omplement. In IEEE

ICSE International Workshop on Automated Program Analysis, Testing and Veri�
ation, pages 32{39,

Limeri
k, Ireland.

White, L. J. and Cohen, E. I. (1980). A domain strategy for
omputer program testing. IEEE Transa
tions

on Software Engineering, 6:247{257.

4

